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Abstract

Purpose – This paper aims to point out the critical problems in numerical verification of
solidification simulation codes and the complexity of the verification and to propose and apply a
procedure of generalized verification for macrosegregation simulation.

Design/methodology/approach – A partial verification of a finite-volume computational model of
macrosegregation in direct chill (DC) casting of binary aluminum alloys, including the coupled
transport phenomena of heat transfer, fluid flow and species transport, is performed. The verification
procedure is conducted on numerical test problems, defined as subproblems with respect to the
complexity of the physical model, geometry, and boundary conditions. The studied cases are thermal
convection with solidification in DC casting, thermal natural convection of a low-Prandtl-number
liquid metal in a rectangular cavity and 1D directional solidification of a binary Al-Cu alloy.
Grid-convergence studies, code comparison with an alternative Chebyshev-collocation method, and
comparison with a reference similarity solution are used for verification.

Findings – An excellent ability of the model to accurately resolve the thermal convection in the
pertinent range of Prandtl and Rayleigh numbers is shown. Concerns regarding the solution of species
transport in the mushy zone remain.

Research limitations/implications – The proposed verification procedure is not completed in its
entirety. Further verification of the solutal and thermosolutal convection problems is required.

Originality/value – This paper proposes verification techniques for complex coupled solidification
problems involving significant convection in the melt.

Keywords Solidification, Convection, Flow, Modeling

Paper type Research paper

1. Introduction
Direct chill (DC) casting is one of the most widely used industrial light metal processing
technologies. Macrosegregation, an inhomogeneous distribution of alloying elements at
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the scale of the solidified casting, is a common defect that occurs in DC casting of
aluminum alloys. It is a direct consequence of the transport phenomena taking place
during the solidification process. It is caused by advective solute transport primarily due
to the flow of segregated liquid in the mushy solidification zone. This laminar flow is a
result of convection in the liquid part, driven by buoyancy forces due to thermal gradients
(thermal natural convection), buoyancy forces due to concentration gradients (solutal
natural convection), and inlet flow (bulk convection). Additionally, a feeding flow due to
density differences between the two phases (solidification shrinkage) is induced in the
mushy zone. The coupled transport of heat, species and momentum is characterized by
low-Prandtl numbers (Pr , 1022), high-Schmidt numbers (Sc , 102), and high-thermal
and solutal Rayleigh numbers (RaT , 106, . . . 107, RaC , 1011). Macrosegregation can
lead to nonuniform mechanical properties, which affect the behavior of the metal during
subsequent treatments and impair the quality of the final product. It is therefore desirable
to be able to simulate the casting process in order to predict the influence of casting
parameters on the resulting macrosegregation pattern. Besides, the prediction, modeling is
aimed at improving understanding of the basic mechanisms involved.

Recent numerical results (Založnik and Šarler, 2005a) led to the hypothesis that the DC
casting parameters affect macrosegregation through their direct effect on the structure of
the thermosolutal natural convection flow – the driving flow in the liquid part of the
solidifying casting. In view of the final objective of development of a predictive model, this
finding motivates a more rigorous verification procedure and the determination of
requirements for numerical accuracy in the modeling of the predominantly advective
transport of momentum and species as is the case during solidification of metal alloys. A
further incentive for verification is the fact that previously presented models of
macrosegregation in DC casting (Reddy and Beckermann, 1997; Vreeman and Incropera,
2000; Jalanti et al., 2001) did not demonstrate a rigorous verification procedure and that no
clear numerical reference results for the casting problem exist. The efforts to clarify some
of the numerical issues were recently made by Venneker and Katgerman (2002).

The present paper details a partial verification of a finite-volume numerical model
developed for macrosegregation in DC casting. Numerical results obtained in the
simulations of DC casting of a binary aluminum alloy (Al-5.25%Cu) show a complex
multicellular thermosolutal flow structure. The aforementioned hypothesis on the
effect of casting parameters (Založnik and Šarler, 2005a), particularly in view of the
complex coupling of the transport of heat, momentum, and species and the difficult
numerical modeling of predominantly advective transport, indicates the need for a
stepwise verification of the simulation code on smaller “subproblems.” The verification
is thus conducted with three subproblems of the DC casting problem. The first two aim
to check the accuracy of the numerical solution of the flow field and the thermal natural
convection problem. The third one verifies the coupling between the macroscopic heat
and species transport in the mushy zone and the microsegregation model. The
verification results presented in this first phase are satisfactory and further verification
steps are outlined.

2. Model description
2.1 Macroscale transport model
The one-phase continuum mixture model developed by Bennon and Incropera (1987) is
used to describe the solidification system. The macroscopic conservation equations are
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transport equations for heat, mass, momentum, and species, simultaneously valid in
the liquid, mushy, and solid regions. A rigid and connected solid phase is assumed,
forming a porous structure (mush) in the phase change zone. In the one-phase model
the two-phase (solid-liquid) mixture is described using mass fractions ( fk) and volume
fractions (gk) of solid (k ¼ s) and liquid (k ¼ l) phases, defined as follows:

f k ¼
mk

ms þ ml
gk ¼

V k

V s þ V l
¼

rm

rk

f k ð1Þ

f s þ f l ¼ 1; ð2Þ

where m is the mass and V is the volume of the respective phase and subscript “m”
denotes the mixture. In the framework of a one-phase representation of the solid-liquid
mixture, the mixture density rm, velocity ~vm, enthalpy hm, and concentration Cm are
defined:

rm ¼ gsrs þ glrl; ~vm ¼ f s~vs þ f l~vl; hm ¼ f shs þ f lhl; Cm ¼ f sCs þ f lC l: ð3Þ

In the computations presented in this paper, two slightly different models are
used. In the macrosegregation computations, the full thermal and solutal solidification
model is used. In the verification cases for thermal convection, a simplified thermal
solidification model, which disregards species transport, however retains a
solidification interval and a mushy zone, is employed. The full model is described
hereafter and the simplifications made in the thermal solidification model are noted on
the way.

The governing equations are formulated in terms of the mixture quantities, for
which they are solved. Nevertheless, it is inevitable that terms containing phase
quantities are retained. They are expressed as correction “source” terms, appearing as
last terms on the right hand side in the equations given below. The continuity equation
for the mixture retains the form valid for one phase:

›rm

›t
þ 7 · ðrm~vmÞ ¼ 0: ð4Þ

The mixture momentum conservation equation is:

›rm~vm

›t
þ 7 · ðrm~vm~vmÞ ¼2 7p þ 7 · ml

rm

rl
7~vm

� �
2

ml

K

rm

rl
ð~vm 2 ~vsÞ

2 r0~g½bTðT 2 T0Þ þ bCðCl 2 C0Þ�2 7 · ½rmð f s~vs~vs

þ f l~vl~vl 2 ~vm~vmÞ�;

ð5Þ

where p is the pressure, ml is the liquid viscosity, K is the permeability of the porous
mush, r0 is the reference density, ~g is the gravity acceleration, bT and bC are the
thermal and solutal volumetric expansion coefficients, respectively, T is the
temperature, and T0 and C0 are the reference temperature and concentration.
The velocity of the solid is defined to be equal to the casting velocity ð~vs ¼ ~vcastÞ
everywhere, since all solid mush is assumed to be coalesced in a porous matrix and
connected with the bulk solid. The permeability is modeled by the Kozeny-Carman
relation K ¼ K0g

3
l =ð1 2 glÞ

2. In the thermal solidification model the solutal buoyancy
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term is zero, since the concentration is assumed to be homogeneous. The diffusive term
in the energy conservation equation (Fourier law) is reformulated in terms of the
mixture enthalpy using the following supplementary thermodynamic state equations:

hsðTÞ ¼ href þ

Z T

Tref

cpsdT hlðTÞ ¼ hsðTÞ þ Leut þ

Z T

Teut

ðcpl 2 cpsÞdT; ð6Þ

where cp is the specific heat, Teut is the eutectic temperature and Leut is the latent heat
of solidification of the primary phase at the eutectic. The mixture energy conservation
equation is thus written:

›ðrmhmÞ

›t
þ 7 · ðrm~vmhmÞ ¼ 7 ·

k

cps
7hm

� �
þ 7 ·

k

cps
7ðhs 2 hmÞ

� �

2 7 · ½rmð f s~vshs þ f l~vlhl 2 ~vmhmÞ�;

ð7Þ

where k is the thermal conductivity of the mixture. The mixture species conservation
equation is:

›ðrmCmÞ

›t
þ 7 · ðrm~vmCmÞ ¼ 7 · ðrmDm7CmÞ

þ 7 · ½rmð f sDs7Cs þ f lDl7C l 2 Dm7CmÞ�

2 7 · ½rmð f s~vsCs þ f l~vlCl 2 ~vmCmÞ�;

ð8Þ

where D is the molecular diffusivity. In the thermal solidification model the species
conservation equation is omitted.

2.2 Microsegregation model
The phase quantities ( fs, fl, ~vs, ~vl, hs, hl, Cs, Cl) and the temperature T, which still appear
in the mixture transport equations, (4), (5), (7) and (8), are modeled in the following way.
According to the aforementioned assumption, ~vs ¼ ~vcast and, consequently, equations
(2) and (3) yield ~vl ¼ ½~vm 2 ð1 2 f lÞ~vcast�=f l. Further, the unknowns fs, hs, and hl can be
eliminated using equations (2) and (6). The solid concentration Cs is determined by the
partitioning that follows from the inverse lever rule and an equilibrium solid-liquid
partition ratio kp:

Cs ¼ kpC l: ð9Þ

The remaining three unknowns fl, Cl, and T are determined by solving a system of
three equations: the definition of mixture enthalpy (equation (10)), derived from
equations (3) and (6), the inverse lever rule (equation (11)), which can be derived
from equations (3) and (9), and an additional equation, describing the linearized
liquidus line equation (12):

hmðT; f lÞ ¼

Z T

Tref

cpsdT þ f l Leut þ

Z T

Teut

ðcpl 2 cpsÞdT

� �
; ð10Þ

Cl ¼
Cm

kp þ f lð1 2 kpÞ
; ð11Þ
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TðClÞ ¼ T f þ mLCl; ð12Þ

where Tf is the melting temperature of the pure solvent and mL is the slope of the
liquidus line in the binary phase diagram. By substitution of variables in equations
(10)– (11) a quadratic equation for fl in the form F( fl) ¼ 0 is obtained, which is solved
analytically for fl. Then the temperature T is calculated from equation (10) and the
liquid concentration Cl from equation (12). Further, the solid concentration Cs is
calculated from equation (9), and the phase enthalpies hs and hl from their definitions in
equation (6).

In the thermal solidification model, the concentrations Cs and Cl are not defined.
The model is closed by using equation (10) and the assumption of a linear temperature
dependence of fl:

f l ¼
T 2 TS

TL 2 TS
; ð13Þ

where the solidus (TS) and liquidus temperatures (TL) are constant, at values
corresponding to the nominal concentration.

2.3 Solution method
In the macrosegregation code the set of macroscopic transport equations (4), (5), (7) and
(8) is solved with the finite volume method (FVM). The code supports Cartesian and
axisymmetric geometries discretized by orthogonal grids. Dirichlet, Neumann or Robin
type boundary conditions can be selected at individual boundaries, which enabled a
straightforward use of a single numerical code in all verification cases presented in this
paper. For the discretization of advective fluxes the second-order centered-difference
scheme is used in the energy equation, giving effective and accurate solution. In the
momentum and species conservation equations different schemes can be used.
In the computation of macrosegregation in DC casting, the first-order upwind scheme is
used in order to cure severe problems with iterative convergence of the coupled equation
system, which are encountered when higher-order schemes are used for momentum
advection. Note that this is only a preliminary computational framework that works
efficiently. It is used before an efficient implementation of more accurate numerical
schemes, which have been shown to be necessary to model the predominantly advective
transport of species and momentum (Založnik and Šarler, 2005b), is completed. In all
subsequently presented verification cases the third-order accurate QUICK scheme
(Leonard, 1997) is used for both momentum and species. The SIMPLE algorithm
(Ferziger and Perić 2002) is employed for pressure-velocity coupling and implicit Euler
timestepping is used in the transient computations.

In the verification problem treating thermal natural convection in a cavity, the results
of the macrosegregation code (FVM) are compared to those obtained by a spectral
Chebyshev-collocation method (SCM). The spectral method is implemented in a
numerical code tailored for the simulation of thermal natural convection in enclosures
under the Boussinesq assumption. It employs either a projection method or the direct
Uzawa method for pressure-velocity coupling and three-level semi-implicit second-order
time stepping. A more detailed description of the code is given in Xin and Le Quéré (2002).
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3. Macrosegregation in DC casting
The motivation for a subsequent more detailed verification of the developed
macrosegregation code is given by the intricate flow predicted in simulations of DC
casting. The results of a computation of macrosegregation in the DC casting of an
Al-5.25%Cu alloy axisymmetric billet are shown in Figure 1. The computation was
performed on an axisymmetric domain of 0.141 m radius and 0.6 m length (only the
interesting top part is shown in all figures) assumed as adiabatic at the bottom
boundary. A 100 £ 356 control-volume (CV) grid was used. The grid was strongly
biased in the top part (z . 20.15 m, the height of the liquid and mushy regions), such
that this part was discretized into 100 £ 200 equal CVs and the remaining bottom part
into 100 £ 156 CVs with a constant grid expansion factor of 1.0175. All physical
parameters are specified in Tables AI and AII in the Appendix. Figure 1(a) shows the
flow field together with the liquid-density field (calculated according to the Boussinesq
approximation used in the momentum equation (5)). As can be seen in the plot, the
liquid is relatively quiescent at the bottom and in the center of the liquid sump, which
appears to be caused by the counteracting effect of thermal buoyancy and the layering
tendency of the heavy solute-rich liquid. Next to the liquid-mush interface a complex
flow structure, consisting of small vortices forms. Five vertically arranged flow cells
can be identified, delimited by sharp density gradients. Each cell contains one or two
vortices of thermosolutal origin. Such a multicellular structure occurs in thermosolutal
flows, when a stable solutal stratification is destabilized by a large enough lateral
temperature gradient (Gobin and Bennacer, 1996). The coupling of the thermal and
solutal driving forces and the advective transport of heat and solute also causes a
vertical density bump inside each thermosolutal cell and raises the splitting of the flow
into two vortices. The flow structure close to the liquidus front appears to be very
complex and more detailed studies seem to be necessary to determine and explain it
more accurately. In the porous mushy zone (between the liquid-fraction isolines fl ¼ 0
and fl ¼ 1 in Figure 1) the dominant mechanism of solute transport is the flow driven
by solidification shrinkage due to the higher density of the solid. It is directed
perpendicular to the liquid-fraction gradient, as indicated in Figure 1(a).

4. Outline of the verification procedure
To be able to give a plausible sense to the flow structure observed in the DC casting
simulation and construct a physical explanation of it, an accurate and verified numerical
solution of the coupled problem is required. As there exist no reference solutions to the
fully coupled problem, which would tremendously facilitate verification, it is difficult and
unreasonable to consider the fully coupled problem as a test case and perform a numerical
study of it. Because of the intricate coupling of the thermosolutal buoyancy driven flow,
the heat and solute transport, solidification, and microsegregation in the mushy zone,
i.e. complex physical phenomena involved, a stepwise verification procedure on
subproblems is more feasible. Several subproblems – simplifications with respect to the
complexity of the physical model, geometry, and boundary conditions – are proposed to
test the solutions of individual transport equations and equation couplings in the
pertinent parameter range, estimated as RaT , 106, . . . 107, Pr , 1022, Sc , 102.
The ability of the code to properly resolve the thermal-convection flow in the low-Pr
liquid is assessed on the following two subproblems.
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Figure 1.
Results of a computation
of macrosegmentation
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Notes: (a) Liquid density (r1 = r0 [bT (T – T0) + bC (C1 – C0)]) and velocity
(n→m) fields in the axisymmertric billet obtained in the full macrosegregation
computation. The density field is shown only in the liquid and part of the mushy
zone ( f1 > 0.9); (b) Mixture Cu concentration (Cm) field in the billet
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4.1 Thermal convection in DC casting
This problem retains the realistic geometry, boundary conditions, the coupling
between the thermal and flow field, the interaction of the flow with the mushy zone and
a simplified treatment of alloy solidification, while omitting the influence of the
composition on the buoyancy force and on solidification. A reference solution does not
exist. The numerical solution can be investigated by a grid convergence study. A
confrontation with solutions obtained by an alternative code and numerical method
(Perko, 2005) is planned later.

4.2 Thermal natural convection in a rectangular cavity
A numerically demanding prototypal problem for transient thermal buoyancy driven
flow in metals on a simplified geometry, with simple boundary conditions and without
solidification is studied. While a reference solution is presently not available, this
problem enables verification by a detailed comparison to the solution, which was
independently obtained with an extensively tested Chebyshev spectral code. The
results of the presented comparison also present a starting point for the anticipated
definition of a benchmark problem related to flow in metal solidification systems.

The coupling of the macroscopic heat and species transport and microsegregation is
checked by a confrontation to a reference solution.

4.3 1D inverse macrosegregation in directional solidification
The numerical solution is compared to the semi-analytical similarity solution,
developed by Voller (1997b), which transforms the governing partial differential
equations into a set of ordinary differential equations. The similarity solution describes
the macrosegregation induced by the 1D flow due to solidification shrinkage feeding in
bottom-cooled directional solidification of a binary alloy. It includes a complete
coupling of concentration and temperature fields in the mushy region, shrinkage fluid
flow, and microsegregation with an eutectic reaction.

The aforementioned test cases represent a partial verification of the model. Further
tests, aiming at the evaluation of the ability of the code to properly resolve the
advective solute transport and the (low-Pr, high-Sc) thermosolutal flow are planned
(Založnik, 2006). The first one is a test case for thermosolutal natural convection in a
rectangular cavity for high Pr and high Sc. It focuses on the verification of the species
transport. It features basic parameters of thermosolutal buoyancy-driven flow, as it
omits instabilities inherent in low-Pr thermal convection. The results can be compared
to solutions published by Gobin and Bennacer (1996). The second test case considers
thermosolutal natural convection in a rectangular cavity for low Pr and high Sc, which
represents the relevant parameter range for buoyancy-driven flow in metals. It means a
much less stable parameter range, since the flow is characterized by regions where it is
controlled by a balance of thermal and solutal buoyancy driving forces and inertia, and
only weak influence of viscous forces.

5. Thermal convection in DC casting
The adequacy of the numerical model for the solution of the flow field is studied in
more detail on the simplified thermal solidification model of DC casting, described in
Section 2. Species transport is not taken into account, thus reducing the problem to one
of coupled convective heat transfer and fluid flow. Apart from the solidus and liquidus
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temperatures, which are fixed at values corresponding to the nominal composition of
Al-5.25%Cu (TS ¼ 827 K, TL ¼ 920 K) all parameters are the same as in the previously
presented macrosegregation computation. Also the biased computational grids are
constructed by the same principles (uniformly meshed top part at z . 20.15 m and a
coarsening grid with a constant grid expansion factor in the bottom part). Part of the
results of a grid convergence study are shown in Figure 2, where streamlines in the
axisymmetric billet in the final steady state are shown as obtained in calculations on
four different computational grids. An evolution of the solution into a multicellular
flow is observed with grid refinement, and an apparently grid independent solution is
obtained with very fine grids.

A more detailed characterization of grid convergence is provided in Table I,
showing the convergence of global velocity and streamfunction minima (maxima in
absolute values), i.e. of the L1 norm of the respective quantities, as well as of the
discretized Ll norm of the kinetic energy:

Figure 2.
Grid convergence
of the flow field in the
axisymmetric billet
for thermal convection
in DC casting
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kEkkl ¼
1

2
i

X
ð f l; irl þ ð1 2 f l; iÞrsÞðDV Þiðu

2
i þ v 2

i Þ: ð14Þ

Subscript i denotes the value at CV i and (DV)i is the volume of the respective CV. An
attempt to more clearly characterize grid convergence using Richardson extrapolation
(Roy, 2005) was made by computing the observed order of convergence for the
quantities in Table I over the three finer grids:

pRex ¼
lnð f 52£152 2 f 102£302Þ=ð f 102£302 2 f 202£602Þ

lnðrÞ
; r ¼ 2; ð15Þ

where fm£n denotes the solution on the m £ n grid and r is the grid refinement ratio that is
constant and equals 2. Although very good grid convergence is found for the velocities, the
convergence of cmin and kEkkl shows behavior that is not entirely clear and prevents a
rigorous characterization of the order of grid convergence. Despite that an estimate of
accuracy of the solution on the finest grid, the grid convergence index (GCI):

GCI202£602 ¼
3

r p 2 1

f 102£302 2 f 202£602

f 202£602

����
����; r ¼ 2; p ¼ 2; ð16Þ

was computed, assuming an order of convergence p ¼ 2, which is the theoretical order of
accuracy of the discretization methods. The results indicate that the solution is probably
well-converged but that it is not straightforward to perform a clear and rigorous grid
convergence characterization using Richardson-extrapolation based techniques. To
investigate in more detail the flow problem and its numerical behavior the solution is
studied on a further simplified case of thermal convection in a cavity that enables more
rigorous verification and a comparison with a different numerical method.

6. Thermal natural convection in a rectangular cavity
The finite-volume DC casting code (FVM) is further tested on a problem of transient
thermal natural convection in a rectangular cavity, which was devised to be prototypal
for the flow during the initial stages of solidification in a cavity. The problem considers
a liquid metal in a cavity with insulated top and bottom walls, of width L and height H,
that is initially at the temperature of the left wall TH. At time t ¼ 0 a constant lower
temperature TC is imposed at the right wall. The asymmetric cooling induces
a transient flow, which evolves into an unsteady multicellular structure. After the
initial transient the system evolves into a periodic oscillatory flow. The system is
characterized by Pr ¼ 0.0137, Ra ¼ 2.81 £ 105 (both parameters correspond to the
thermophysical properties of Al-4.5%Cu (Vreeman and Incropera, 2000), a wall

Grid umin (m/s) vmin (m/s) cmin (m3/s) kEkkl( J )

27 £ 77 21.782 £ 1022 20.982 £ 1022 21.217 £ 1022 3.425 £ 1024

52 £ 152 22.151 £ 1022 21.116 £ 1022 21.129 £ 1025 3.464 £ 1024

102 £ 302 22.337 £ 1022 21.312 £ 1022 21.108 £ 1025 3.482 £ 1024

202 £ 602 22.363 £ 1022 21.355 £ 1022 21.116 £ 1025 3.500 £ 1024

pRex 2.8 2.2 – 20.007
GCI202£602ð p ¼ 2ÞðpercentÞ 1.1 3.2 0.7 0.5

Table I.
Grid convergence

of velocity and
streamfunction minima

and of the discretized
Ll norm of the kinetic

energy for the thermal
DC casting problem
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temperature difference of 40 K and a cavity height of 0.05 m), and an aspect ratio
A ¼ H/L ¼ 4. The results are presented in dimensionless form, with the variables
scaled as:

X ¼
x

H
; Y ¼

y

H
; t* ¼

k
ffiffiffiffiffiffiffiffi
RaT

p

H 2
t; ðu*; v*Þ ¼

H

k
ffiffiffiffiffiffiffiffi
RaT

p ðu; vÞ;

c* ¼
1

k
ffiffiffiffiffiffiffiffi
RaT

p c; u ¼
T 2 TH

TH 2 TC

ð17Þ

where H is the cavity height, k is the thermal diffusivity, t is the time, and c is the
streamfunction.

The results are compared to the solution obtained by the SCM (Xin and Le Quéré
2002), which are verified to be grid independent. Additionally, a grid convergence
study of the FVM solution involving four grids is made. Such a combined verification
approach gives a very high level of confidence. In the code comparison (Figures 3 and 4)
the FVM solution obtained on a uniform 100 £ 400 grid and using a dimensionless
time step of Dt * ¼ 8.91 £ 1022 is presented. As already pointed out in Section 2.3,
FVM discretization schemes were used that are theoretically at least second-order
accurate in space and first-order accurate in time. The SCM solution was obtained on a
Gauss-Lobatto spatial resolution of 59 £ 101 and a dimensionless time step of

Figure 3.
Temperature and flow
fields ðDu ¼ 0:1;
Dc* ¼ 0:005Þ in the
cavity at same phase angle
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Dt * ¼ 1022 using a second-order accurate timestepping scheme. The streamlines and
temperature contours at the oscillation phase angle corresponding to the state obtained
by the spectral method at t * ¼ 1,000 are shown in Figure 3. Note that the final period of
the oscillations is the same in both computations, however there is a small phase shift.
The time evolution of the Nusselt number at both walls and at the center plane is
shown in Figure 4. Overall, the agreement of the FVM and SCM solutions is
extraordinary, especially with regard to the challenging problem.

Aiming at a rigorous verification and with the objective of elucidating the convergence
behavior of the FVM flow solution, which was somewhat unclear in the thermal DC
casting problem, a grid convergence study over four grids (13 £ 50, 25 £ 100, 50 £ 200,
and 100 £ 400) with discretization-error estimation is made. A detailed investigation of
grid convergence of all quantities over the entire domain in the state shown in Figure 3
revealed that the convergence is oscillatory. Therefore, the approximate error spline (AES)
method (Celik et al., 2005) is used to compute an extrapolated solution. The error band GCI
of the extrapolated solution is calculated according to (Roache, 1998):

GCIAESex ¼
1

r p 2 1

f 100£400 2 f AESex

f AESex

����
����; r ¼ 2; p ¼ 2; ð18Þ

where AESex denotes the AES-extrapolated solution and the theoretical order of
convergence p ¼ 2 is used. The results of the grid convergence study summarized in
Table II indicate a very good accuracy, showing that the error band of the extrapolated
solution is well below 0.5 percent and the difference between the 100 £ 400-grid and the

Figure 4.
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extrapolated solutions is within a margin of less than 1 percent. The excellent result of the
FVM-SCM code comparison and the demonstrated grid convergence infer a very high
level of confidence in both codes and affirm a successful step in the verification of the flow
model of the DC casting code.

7. Coupled transport of heat, mass, and species in the mushy zone
The proper solution of the coupling of the continuity, energy, and species conservation
equations, and the microsegregation model, which defines the solute partitioning of the
solid and liquid phases in the mushy zone as well as the temperature and liquid
fraction in the enthalpy formulation, is essential for the prediction of
shrinkage-induced macrosegregation (Figure 1). As part of the full model this
coupling is verified by comparison with Voller’s (1997b) similarity solution for 1D
directional solidification. The solidification of an Al-5%Cu alloy proceeds in an
insulated vertical mold with a bottom (z ¼ 0) cooled at a constant temperature below
the solidus temperature of the alloy. Initially the liquid alloy has a uniform
concentration at 5%Cu and a uniform temperature slightly above the liquidus. The
mold is considered long enough such that the temperature and concentration at its top
remain at the initial values throughout. During solidification three zones form – a solid
zone at the bottom, a mushy zone between the eutectic and liquidus temperatures and a
liquid zone at the top. A flow of enriched liquid towards the bottom is induced by
solidification shrinkage in the mushy zone. The flow drives the advective transport
towards the eutectic front and produces positive macrosegregation (inverse
segregation) in the solidified bottom part and a solute-depleted mushy zone. The
similarity solution is formulated using a similarity variable j ¼ z=

ffiffiffiffiffi
kt

p
, such that it

reduces the governing PDEs, equations (4), (7) and (8), to a set of ODEs. This set is
solved analytically in the fully solid and liquid parts and with a Runge-Kutta method
in the mushy part. The introduction of the similarity variable also transforms the
transient problem (dependent on z and t) into a steady problem in terms of j.
A comparison of the similarity solution and the numerical solution is shown in Figure 5.
The transient numerical solution is obtained with the finite-volume macrosegregation
code on a 4 £ 402 grid and transformed into the j-space. It is shown for 15 different
times, t ¼ 10, . . . 150 s, evenly distributed at Dt ¼ 10 s. The considerable discrepancy
in the concentration profile is attributed to a numerical problem related to the
resolution of the exact position of the eutectic front. The problem was found to be
identical to the problem known from fixed-grid numerical solutions of the Stefan
problem (Voller, 1997a). Here, it effectively causes oscillations of the vertical velocity
ðU * ¼

ffiffiffiffiffiffiffiffiffi
t=kv

p
Þ, shown in the profile in Figure 5(a), which strongly deteriorates the

solution of the predominantly advective solute transport.

Grid u*max v*max jc*jmax

13 £ 50 1.060 3.051 £ 1022 3.93017 £ 1022

25 £ 100 1.019 2.940 £ 1022 3.91031 £ 1022

50 £ 200 1.032 2.989 £ 1022 3.99413 £ 1022

100 £ 400 1.038 3.023 £ 1022 4.00588 £ 1022

AESex 1.040 3.039 £ 1022 4.00448 £ 1022

GCIAESex ðpercentÞ 0.1 0.3 0.005

Table II.
Grid convergence
of velocity and
streamfunction maxima
of the FVM solution, and
the approximate-error-
spline extrapolated
solution (AESex)
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8. Conclusions
The verification of the finite-volume based code developed for the simulation of
macrosegregation in DC casting has shown an excellent ability of the model to
accurately resolve the thermal convection in the pertinent parameter range of Pr and
RaT. With regard to this conclusion, the failure to rigorously characterize the grid

Figure 5.
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convergence of the thermal convection flow solution in the realistic DC casting
geometry by Richardson extrapolation, shows that grid-convergence analysis of such
problems is not straightforward and more sophisticated techniques, such as the
approximate-error-spline method, may have to be used. Additionally, an optimization
of numerical parameters, i.e. grid spacing, local grid refinement in the porous
solidification region, could improve accuracy and speed up grid convergence. Concerns
regarding the solution of species transport in the mushy zone remain, although it is not
completely clear how the problems encountered in the solution of the transient
reference solidification problem relate to the steady mushy zone in DC casting. Further
verification steps of the DC casting code will consist of problems of thermosolutal
natural convection in simple geometries.

References

Bennon, W.D. and Incropera, F.P. (1987), “A continuum model for momentum, heat and species
transport in binary solid-liquid phase change systems – I. Model formulation”,
International Journal of Heat and Mass Transfer, Vol. 30 No. 10, pp. 2161-70.

Celik, I., Li, J., Hu, G. and Shaffer, O. (2005), “Limitations of Richardson extrapolation and some
possible remedies”, Journal of Fluids Engineering ASME, Vol. 127, pp. 795-805.
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Appendix

See Table AII on following page.

Corresponding author
Miha Založnik can be contacted at: miha.zaloznik@mines.inpl-nancy.fr

Solid density rs ( kg/m3) 2750a

Liquid density rl ( kg/m3) 2460a

Solid specific heat cps ( J/kgK) 1030a

Liquid specific heat cpl ( J/kgK) 1130a

Solid thermal conductivity ks (W/mK) 180a

Liquid thermal conductivity Kl (W/mK) 80a

Solid diffusivity Ds (m2/s) 5 £ 10212 b

Liquid diffusivity Dl (m2/s) 5 £ 1029 a

Latent heat at eutectic Leut ( J/kg) 3.77 £ 105 a

Liquid viscosity m ( Pas) 1.3 £ 1023 a

Thermal expansion coefficient bT ( K21) 1.17 £ 1024 b

Solutal expansion coefficient bC ( – ) 20.73b

Reference temperature T0 (K) 973.15
Reference concentration C0 (– ) 0.0525
Reference density r0 (kg/m3) 2460
Permeability constant K0 (m2) 6.67 £ 10211 b

Pure Al melting temperature Tf (K) 933.6a

Al-Cu eutectic temperature Teut (K) 821.2a

Eutectic solidification interval DTeut (K) 1
Liquidus slope ml (K) 338.45
Partition coefficient kp (– ) 0.173

Source: aJMatPro software (Saunders et al., 2001); bVreeman and Incropera (2000)

Table AI.
Thermophysical

properties of
Al-5.25 wt%Cu
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Table AII.
Process parameters and
boundary conditions for
the DC casting cases
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